Investigation of Dielectric and Piezoelectric studies on Sr doped PBN ceramics

B.B.Parvateesam, K.Chandra Mouli, V.Raghavendra, S.Suryanarayana
1Dr. V.S.Krishna Govt. Degree College(A), Visakhapatnam
2Dept. Of Engineering Physics, Andhra University, Visakhapatnam
*Corresponding author: E.Mail: parvateesamnbisetti@yahoo.in

ABSTRACT

The ceramic compositions of PBN are Pb₁ₓBaₓNb₂O₆ (x=0.4), Pb₁₋ₓBaₓSrₓNb₂O₆ (x=0.4; y=0.02, 0.04, 0.05) were prepared by solid state reaction method. The general formula of TB type is [(A₁)₄(A₂)₄(C)₄(B₁)₂(B₂)₈O₃₀]. Dielectric studies of pure PBN and Sr doped PBN as a function of temperature were studied. Piezoelectric studies Kₚ, Kᵣ, Qₑ and charge coefficient are reported. Key words: PBN, Dielectric studies, Piezoelectric studies, Tungsten Bronze.

INTRODUCTION

Lead niobate (PbNb₂O₆) is one of the first crystals of the tungsten bronze-type structure which was first reported as ferroelectric (G. Goodman, Text Book, 1953). It is well known that the tungsten bronze niobates generally indicate a relaxor ferroelectric nature. These materials crystallize in a variety of structures including tetragonal tungsten bronze (TTB), hexagonal tungsten bronze (HTB), and intergrowth tungsten bronze (ITB) (V. Hornebecq et al., 2000). The synthesis and phase identification of the piezoelectric/ferroelectric phase of lead niobate is quite difficult, that a few competing phases and compounds tend to form during the preparation (M. Venet et al., 2005; H. S. Lee et al., 1998; J. Soejima et al., 2000; S. Ray et al., 2000). The general formula for tungsten bronze structure could be represented as follows: (A₁)₄(A₂)₄(C)₄(B₁)₂(B₂)₈O₃₀−x.

PBN has three distinct interstitial sites which are A₁ = square, A₂ = pentagon and C = triangle. The common chemical formula is (A₁)₂(A₂)₄(C)₄(B₁)₂(B₂)₈O₃₀, where positions A₁, A₂, B₁, B₂ and C will be filled by different valence cations or maybe partially empty. In a 4-mm unit cell of (Pb, Ba)₅Nb₁₀O₃₀, Pb ions prefer 12-coordinated square (A₁-site) while Ba ions prefer 15-coordinated pentagon (A₂-site) cations surrounded by 9-coordinated triangle (C-site) oxygen anions, and since there are only five Ba²⁺ and Pb²⁺ cations available for six A-site in the unit cell, there is one vacancy distributed in the A-site (C.A. Randall et al., 1993). Due to high Curie temperature and low-quality factor, the material is useful for fabrication of ultrasonic transducers for high-temperature applications where the PZT and other piezoelectric materials cannot be used (Y. M. Li et al., 2008). This paper reports the dielectric and piezoelectric properties of Sr:PBN oxide ceramics.

RESULTS AND DISCUSSIONS

The polycrystalline samples of Pb₁₋ₓBaₓNb₂O₆ (x=0.4) & Pb₁₋ₓBaₓSrₓNb₂O₆ (x=0.4; y=0.02, 0.04, 0.05) were prepared by solid state reaction method. The synthesized ceramic compositions are Pb₀.₆Ba₀.₄Nb₂O₆, Pb₀.₅₈Ba₀.₄Sr₀.₀₂Nb₂O₆, Pb₀.₅₆Ba₀.₄Sr₀.₀₄Nb₂O₆, Pb₀.₅₅Ba₀.₄Sr₀.₀₆Nb₂O₆. The raw materials of oxides and carbonates PbO, BaCO₃, SrCO₃ and Nb₂O₅ are of AR grade. The physical mixture is weighed to give the compositions. They have been calcined around 900°C for 2 hours. Repeated calcinations and grinding facilitate lesser particle size and to give fresh surface to individual reactants which will increase the rate of solid state reaction. The calcined powders are grounded with PVC binder and made pellets to disc shape. The pelletized sample has been sintered at the temperature of 1300°C for two hours. They have been electrode with air drying silver paste, curved at 600°C for 20 min and has been for the measurement of dielectric and piezoelectric properties. The procedure adopted to yield the following compositions has given in the flow chart.

The dielectric measurements are one of the characterization techniques to understand ferro-electricity of ferroelectric ceramics. The dielectric constant and tanδ of the material under study have been measured at 1KHZ by noting capacitance value using digital LCR meter type LCR-6. The dielectric measurements made in the temperature range from room temperature to 300°C, the temperature has been monitored by using Cr-A1 thermocouple. The e.m.f of thermocouple has been measured with the help of a temperature indicator type Masbius DTI 4001.

The dielectric constant is calculated from the following formula: K = ϵ₀ε/60 A/f
Where c is the capacitance, d the thickness, A the surface area of sample and ε_0 is the permittivity of free space (8.85×10^{-12} F/m). Piezoelectric coupling coefficients of ferroelectric ceramics are measured by the resonance-antiresonance technique. This is accomplished by using HP impedance analyzer (Model No.4192A) probe fixter model 16095A was used as intermediary connection between the sample holder and impedance analyzer through BNC adopter. The piezoelectric material behaves capacitively below F_r and above F_a between F_r and F_a behaves inductively. The phase angle of the element also undergoes a sign change at the resonance and anti-resonance frequencies and therefore can also be used to determine F_r and F_a.

Piezoelectric Coefficients:

\[K_p^2/1 = \frac{f_a}{f_r} - f_a \]

K_p = planar coupling coefficient, f_r = resonance frequency, f_a=antiresonance frequency. The electromechanical thickness coupling coefficient K_t is determined from overtone frequency using the formula

\[K_t^2 = \frac{\pi}{2} \left[\frac{f_s}{f_p} \right] \tan \left[\frac{\pi}{2} \Delta f / f_p \right] \]

f_s is series resonance frequency and f_p is parallel resonance frequency. Mechanical quality factor Q_m is calculated from the following.

\[Q_m = \frac{1}{2\pi f_r Z_m C_o \left\{ \frac{f_a^2}{f_a^2 - f_r^2} \right\} } \]

Z_m=minimum resonance impedance, C_o=capacitance of the sample at 1KHz. Piezoelectric charge coefficient is the ratio of electric charge generated per unit area to an applied force and is expressed in Coulomb/Newton.

Table 1. Dielectric Studies of pure PBN and Sr doped PBN as a function of composition

<table>
<thead>
<tr>
<th>PBN Compositions</th>
<th>Dielectric compositions at room temperature εRT</th>
<th>Dielectric constant at transition temperature εTC</th>
<th>Transition temperature T_C°C</th>
<th>Dielectric loss $Tan \delta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb${0.6}$Ba${0.4}$Nb$_2$O$_6$</td>
<td>1605</td>
<td>8021</td>
<td>270</td>
<td>0.05</td>
</tr>
<tr>
<td>Pb${0.5}$Sr${0.02}$Ba$_{0.4}$Nb$_2$O$_6$</td>
<td>1410</td>
<td>6318</td>
<td>263</td>
<td>0.04</td>
</tr>
<tr>
<td>Pb${0.5}$Sr${0.04}$Ba$_{0.4}$Nb$_2$O$_6$</td>
<td>1296</td>
<td>6159</td>
<td>260</td>
<td>0.035</td>
</tr>
<tr>
<td>Pb${0.5}$Sr${0.05}$Ba$_{0.4}$Nb$_2$O$_6$</td>
<td>1253</td>
<td>5839</td>
<td>262</td>
<td>0.03</td>
</tr>
</tbody>
</table>
RESULTS AND DISCUSSION

Dielectric studies: The variation of dielectric constant with temperature measured at 1 KHz frequency. These studies are carried out for pure lead barium niobate (PBN) and Sr doped PBN compositions. The maximum dielectric constant is observed at a Curie temperature (Transition temperature) of 270°C in pure PBN. The obtained ferroelectric Curie temperature Tc and the maximum dielectric constant ε₉ₓ are similar to reported value. The ferroelectric transition temperature Tc₂₆₀°C has also been reported. It is reported that variation of dielectric constant with temperature of pure PBN is sharp compared with Sr doped PBN. The dielectric curves are broadened with increase of Sr content. The Tc slightly decreases with Sr dopant and further there is no significant change with increase of Strontium content. The very low loss tanδ ranging from 0.030 to 0.050 at room temperature has been observed for all compositions. This low loss values clearly indicate that the ferroelectric Curie temperature (Tc), room temperature dielectric constant (εₒ₉ₓ), dielectric constant at transition temperature (ε₉ₓ) and dielectric loss tanδ are given in Table 1.

Piezoelectric studies: The behaviour of piezoelectric constants such as planar coupling coefficients Kp, mechanical quality Qₘ dependence on the Sr dopant in PBN at room temperature are given in Table 2. The piezoelectric constants are calculated from the above equation and the piezoelectric strain coefficients d₃₃ values are presented in Table 2. The variation of Kp is found to be increases with dopant concentration. Initially Kp is decreased with dopant and then slightly increase with dopant concentration. The thickness coupling coefficients Kt is found to increase gradually with increase of dopant content. Similar trend has been observed in the hot pressed Lanthanum doped PBN ceramics. The quality mechanical factor, Qm is found to be 83 for pure PBN. It is almost doubled with strontium dopant and further the Qₘ is slightly decreased with increase of Sr content. The Piezoelectric strain coefficient d₃₃ is obtained as 89x10⁻¹² C/N for pure PBN which is well agreement with reported values.

Table 2. Piezoelectric constants

<table>
<thead>
<tr>
<th>PBN compositions</th>
<th>Planar coupling coefficient Kp</th>
<th>Thickness coupling coefficient Kt</th>
<th>Quality Factor QM</th>
<th>Mechanical factor QM</th>
<th>Piezoelectric charge coefficient d₃₃ x 10⁻¹² C/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb₀.₉Ba₀.₁O₆</td>
<td>0.28</td>
<td>0.15</td>
<td>83</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Pb₀.₉₅Ba₀.₅₂Sr₀.₅₂Nb₂O₆</td>
<td>0.27</td>
<td>0.19</td>
<td>150</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Pb₀.₉₂Ba₀.₃₄Sr₀.₆₄Nb₂O₆</td>
<td>0.27</td>
<td>0.19</td>
<td>147</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>Pb₀.₉₂Ba₀.₅₂Sr₀.₃₈Nb₂O₆</td>
<td>0.26</td>
<td>0.21</td>
<td>138</td>
<td>155</td>
<td></td>
</tr>
</tbody>
</table>

CONCLUSIONS

The maximum dielectric constant is observed at a Curie temperature (Transition temperature) of 270°C in pure PBN. It is reported that variation of dielectric constant with temperature of pure PBN is sharp compared with Sr doped PBN. The dielectric curves are broadened with increase of Sr content. The very low loss tanδ ranging from 0.030 to 0.050 at room temperature has been observed for all compositions. The quality mechanical factor, Qₘ is found to be 83 for pure PBN. The Piezoelectric strain coefficient d₃₃ is obtained as 89x10⁻¹² C/N for pure PBN.

REFERENCES